Laser-Induced Pd-PdO/rGO Catalysts for Enhanced Electrocatalytic Conversion of Nitrate into Ammonia

激光诱导 Pd-PdO/rGO 催化剂增强硝酸盐向氨的电催化转化

阅读:5
作者:James Ebenezer, Aneena Lal, Parthiban Velayudham, Arie Borenstein, Alex Schechter

Abstract

Electrochemical reduction of nitrate to ammonia (eNO3RR) is proposed as a sustainable solution for high-rate ammonia synthesis under ambient conditions. The complex, multistep eNO3RR mechanism necessitates the use of a catalyst for the complete conversion of nitrate to ammonia. Our research focuses on developing a novel Pd-PdO doped in a reduced graphene oxide (rGO) composite catalyst synthesized via a laser-assisted one-step technique. This catalyst demonstrates dual functionality: palladium (Pd) boosts hydrogen adsorption, while its oxide (PdO) demonstrates considerable nitrogen adsorption affinity and exhibits a maximum ammonia yield of 5456.4 ± 453.4 μg/h/cm2 at -0.6 V vs reversible hydrogen electrode (RHE), with significant yields for nitrite and hydroxylamine under ambient conditions in a nitrate-containing alkaline electrolyte. At a lower potential of -0.1 V, the catalyst exhibited a minimal hydrogen evolution reaction of 3.1 ± 2.2% while achieving high ammonia selectivity (74.9 ± 4.4%), with the balance for nitrite and hydroxylamine. Additionally, the catalyst's stability and activity can be regenerated through the electrooxidation of Pd.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。