A Chimeric Signal Peptide-Galectin-3 Conjugate Induces Glycosylation-Dependent Cancer Cell-Specific Apoptosis

嵌合信号肽-半乳糖凝集素-3结合物诱导糖基化依赖性癌细胞特异性凋亡

阅读:10
作者:Sok-Hyong Lee, Fatima Khwaja Rehman, Kari C Tyler, Bing Yu, Zhaobin Zhang, Satoru Osuka, Abdessamad Zerrouqi, Milota Kaluzova, Costas G Hadjipanayis, Richard D Cummings, Jeffrey J Olson, Narra S Devi, Erwin G Van Meir

Conclusions

We demonstrate that sGal-3 kills aberrantly glycosylated tumor cells and antagonizes tumor growth through a novel integrin β1-dependent cell-extrinsic apoptotic pathway. These findings provide proof-of-principle that aberrant N-oncoglycans represent valid cancer targets and support further translation of the chimeric sGal-3 peptide conjugate for cancer therapy.

Purpose

Exploitation of altered glycosylation in cancer is a major goal for the design of new cancer therapy. Here, we designed a novel secreted chimeric signal peptide-Galectin-3 conjugate (sGal-3) and investigated its ability to induce cancer-specific cell death by targeting aberrantly N-glycosylated cell surface receptors on cancer cells. Experimental design: sGal-3 was genetically engineered from Gal-3 by extending its N-terminus with a noncleavable signal peptide from tissue plasminogen activator. sGal-3 killing ability was tested on normal and tumor cells in vitro and its antitumor activity was evaluated in subcutaneous lung cancer and orthotopic malignant glioma models. The mechanism of killing was investigated through assays detecting sGal-3 interaction with specific glycans on the surface of tumor cells and the elicited downstream proapoptotic signaling.

Results

We found sGal-3 preferentially binds to β1 integrin on the surface of tumor cells due to aberrant N-glycosylation resulting from cancer-associated upregulation of several glycosyltransferases. This interaction induces potent cancer-specific death by triggering an oncoglycan-β1/calpain/caspase-9 proapoptotic signaling cascade. sGal-3 could reduce the growth of subcutaneous lung cancers and malignant gliomas in brain, leading to increased animal survival. Conclusions: We demonstrate that sGal-3 kills aberrantly glycosylated tumor cells and antagonizes tumor growth through a novel integrin β1-dependent cell-extrinsic apoptotic pathway. These findings provide proof-of-principle that aberrant N-oncoglycans represent valid cancer targets and support further translation of the chimeric sGal-3 peptide conjugate for cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。