β-Cyanoalanine synthase protects mites against Arabidopsis defenses

β-氰基丙氨酸合酶保护螨虫免受拟南芥的防御

阅读:11
作者:Sameer Dixit, Emilie Widemann, Nicolas Bensoussan, Golnaz Salehipourshirazi, Kristie Bruinsma, Maja Milojevic, Akanchha Shukla, Luis C Romero, Vladimir Zhurov, Mark A Bernards, Maksymilian Chruszcz, Miodrag Grbić, Vojislava Grbić

Abstract

Glucosinolates are antiherbivory chemical defense compounds in Arabidopsis (Arabidopsis thaliana). Specialist herbivores that feed on brassicaceous plants have evolved various mechanisms aimed at preventing the formation of toxic isothiocyanates. In contrast, generalist herbivores typically detoxify isothiocyanates through glutathione conjugation upon exposure. Here, we examined the response of an extreme generalist herbivore, the two-spotted spider mite Tetranychus urticae (Koch), to indole glucosinolates. Tetranychus urticae is a composite generalist whose individual populations have a restricted host range but have an ability to rapidly adapt to initially unfavorable plant hosts. Through comparative transcriptomic analysis of mite populations that have differential susceptibilities to Arabidopsis defenses, we identified β-cyanoalanine synthase of T. urticae (TuCAS), which encodes an enzyme with dual cysteine and β-cyanoalanine synthase activities. We combined Arabidopsis genetics, chemical complementation and mite reverse genetics to show that TuCAS is required for mite adaptation to Arabidopsis through its β-cyanoalanine synthase activity. Consistent with the β-cyanoalanine synthase role in detoxification of hydrogen cyanide (HCN), we discovered that upon mite herbivory, Arabidopsis plants release HCN. We further demonstrated that indole glucosinolates are sufficient for cyanide formation. Overall, our study uncovered Arabidopsis defenses that rely on indole glucosinolate-dependent cyanide for protection against mite herbivory. In response, Arabidopsis-adapted mites utilize the β-cyanoalanine synthase activity of TuCAS to counter cyanide toxicity, highlighting the mite's ability to activate resistant traits that enable this extreme polyphagous herbivore to exploit cyanogenic host plants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。