Sophoricoside ameliorates methicillin-resistant Staphylococcus aureus-induced acute lung injury by inhibiting Bach1/Akt pathway

槐角苷抑制Bach1/Akt通路改善耐甲氧西林金黄色葡萄球菌诱发的急性肺损伤

阅读:4
作者:Yaxian Wu, Shuai He, Yaru Zhang, Shuaichao Li, Ruyin Liu, Yanli Zhang, Yutong Jing, Dan Chen, Ying Tong, Zhiqiang Wang, Qianyun Wang, Qingfeng Pang

Background

The lack of effective treatments for methicillin-resistant Staphylococcus aureus (MRSA) infection, which often leads to severe acute lung injury (ALI), poses a grave threat to human life. Sophoricoside (SOP), an isoflavone glycoside abundant in the fruit of traditional Chinese herbal Sophora japonica l., showed anti-inflammatory effects against atopic dermatitis, allergic inflammation, and lipopolysaccharide-induced ALI. However, its effect and underlying mechanism on MRSA-induced ALI remain unclear.

Conclusion

This study provides the first evidence that SOP effectively mitigates MRSA-induced ALI via suppressing macrophage activation through the inhibition of Bach1/Akt pathway. These findings highlight the potential of SOP as a novel therapeutic agent for treating MRSA-induced ALI.

Methods

In vivo experiments were conducted using wild-type mice to establish MRSA-induced ALI mouse model, and the effects of SOP on ALI were evaluated by hematoxylin-eosin staining, flow cytometry, quantitative real-time polymerase chain reaction, and several biochemical indicators. Adoptive transfer experiments and BTB and CNC homology 1 knockout (Bach1-/-) mice were also utilized in this study. In vitro studies employed murine macrophages RAW264.7 cells, primary bone marrow-derived macrophages (BMDMs), and primary lung macrophages to explore the underlying molecular mechanisms.

Purpose

The aim of this study is to assess the protective effect of SOP in MRSA-induced ALI and elucidate its underlying molecular mechanisms.

Results

The administration of SOP ameliorated MRSA-induced ALI by improving pulmonary histological damages, reducing neutrophil infiltration, suppressing oxidative stress levels, and decreasing the expression of inflammatory cytokines. In isolation experiments with ALI mouse lung macrophages and macrophage adoptive transfer experiments, SOP prevented macrophage activation, thereby reducing the production of proinflammatory cytokines. In vitro experiments demonstrated that SOP decreased the expression of inflammatory mediators in lipoteichoic acid (LTA)-stimulated RAW264.7 cells, BMDMs, and primary lung macrophages. Additionally, SOP inhibited protein kinase B (Akt) phosphorylation and treatment with MK2206-a specific inhibitor of Akt-eliminated SOP's ability to suppress LTA-stimulated macrophage inflammation. Furthermore, stimulation with LTA or MRSA up-regulated Bach1 expression; however, deletion of Bach1 abolished the inhibitory effect of SOP on p-Akt activation as well as inflammation and ALI development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。