Evolutionary plasticity in the requirement for force exerted by ligand endocytosis to activate C. elegans Notch proteins

配体内吞作用激活秀丽隐杆线虫 Notch 蛋白所需的力具有进化可塑性

阅读:6
作者:Paul D Langridge, Alejandro Garcia Diaz, Jessica Yu Chan, Iva Greenwald, Gary Struhl

Abstract

The conserved transmembrane receptor Notch has diverse and profound roles in controlling cell fate during animal development. In the absence of ligand, a negative regulatory region (NRR) in the Notch ectodomain adopts an autoinhibited confirmation, masking an ADAM protease cleavage site;1,2 ligand binding induces cleavage of the NRR, leading to Notch ectodomain shedding as the first step of signal transduction.3,4 In Drosophila and vertebrates, recruitment of transmembrane Delta/Serrate/LAG-2 (DSL) ligands by the endocytic adaptor Epsin, and their subsequent internalization by Clathrin-mediated endocytosis, exerts a "pulling force" on Notch that is essential to expose the cleavage site in the NRR.4-6 Here, we show that Epsin-mediated endocytosis of transmembrane ligands is not essential to activate the two C. elegans Notch proteins, LIN-12 and GLP-1. Using an in vivo force sensing assay in Drosophila,6 we present evidence (1) that the LIN-12 and GLP-1 NRRs are tuned to lower force thresholds than the NRR of Drosophila Notch, and (2) that this difference depends on the absence of a "leucine plug" that occludes the cleavage site in the Drosophila and vertebrate Notch NRRs.1,2 Our results thus establish an unexpected evolutionary plasticity in the force-dependent mechanism of Notch activation and implicate a specific structural element, the leucine plug, as a determinant.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。