Oroxylin A attenuates IL-1β-induced inflammatory reaction via inhibiting the activation of the ERK and PI3K/AKT signaling pathways in osteoarthritis chondrocytes

Oroxylin A 通过抑制骨关节炎软骨细胞中 ERK 和 PI3K/AKT 信号通路的激活来减轻 IL-1β 诱导的炎症反应

阅读:4
作者:Yong Zhang, Qiuyan Weng, Jianming Chen, Ming Li, Jinming Han

Abstract

Osteoarthritis (OA) is characterized by degradation of the articular cartilage, synovium inflammation, subchondral bone sclerosis and osteophyte formation. OA is the most common degenerative joint disorder among the elderly population. In particular, currently available therapeutic strategies, such as non-steroidal anti-inflammatory drugs (NSAIDs) may cause severe side-effects. Therefore, novel candidate targets for OA therapy are urgently needed. Oroxylin A (OrA) is a natural mono-flavonoid that can be extracted from Scutellariae radix. The present study aimed to investigate the potential effects of OrA on interleukin (IL)-1β-induced chondrocytes inflammatory reactions. The current study performed quantitative PCR, western blotting and cell immunofluorescence to evaluate the effect of Oroxylin A in chondrocyte inflammation. The results demonstrated that OrA significantly attenuated the upregulation of inducible nitric oxide synthase and cyclooxygenase 2 by IL-1β at both protein and mRNA levels. IL-1β-stimulated upregulation of matrix metalloproteinase (MMP)-3 and MMP-13 expression, in addition to disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 expression, were all inhibited by OrA. Treatment with OrA significantly reversed the degradation of type II collagen and aggrecan by IL-1β. Mechanistically, OrA suppressed the IL-1β induced activation of ERK1/2 and PI3K/AKT signaling pathways. In conclusion, these findings suggest that OrA can serve as a potential therapeutic agent for the treatment of OA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。