JosD1, a membrane-targeted deubiquitinating enzyme, is activated by ubiquitination and regulates membrane dynamics, cell motility, and endocytosis

JosD1 是一种膜靶向去泛素化酶,由泛素化激活并调节膜动力学、细胞运动和内吞作用

阅读:5
作者:Takahiro Seki, Lijie Gong, Aislinn J Williams, Norio Sakai, Sokol V Todi, Henry L Paulson

Abstract

The functional diversity of deubiquitinating enzymes (DUBs) is not well understood. The MJD family of DUBs consists of four cysteine proteases that share a catalytic "Josephin" domain. The family is named after the DUB ATXN3, which causes the neurodegenerative disease Machado-Joseph disease. The two closely related Josephin domain-containing (JosD) proteins 1 and 2 consist of little more than the Josephin domain. To gain insight into the properties of Josephin domains, we investigated JosD1 and JosD2. JosD1 and JosD2 were found to differ fundamentally in many respects. In vitro, only JosD2 can cleave ubiquitin chains. In contrast, JosD1 cleaves ubiquitin chains only after it is monoubiquitinated, a form of posttranslational-dependent regulation shared with ATXN3. A significant fraction of JosD1 is monoubiquitinated in diverse mouse tissues. In cell-based studies, JosD2 localizes to the cytoplasm whereas JosD1 preferentially localizes to the plasma membrane, particularly when ubiquitinated. The membrane occupancy by JosD1 suggests that it could participate in membrane-dependent events such as cell motility and endocytosis. Indeed, time-lapse imaging revealed that JosD1 enhances membrane dynamics and cell motility. JosD1 also influences endocytosis in cultured cells by increasing the uptake of endocytic markers of macropinocytosis while decreasing those for clathrin- and caveolae-mediated endocytosis. Our results establish that two closely related DUBs differ markedly in activity and function and that JosD1, a membrane-associated DUB whose activity is regulated by ubiquitination, helps regulate membrane dynamics, cell motility, and endocytosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。