Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels

血管壁与血管周围脂肪组织之间的相互作用揭示了脂联素在调节人体血管内皮型一氧化氮合酶功能中的新作用

阅读:4
作者:Marios Margaritis, Alexios S Antonopoulos, Janet Digby, Regent Lee, Svetlana Reilly, Patricia Coutinho, Cheerag Shirodaria, Rana Sayeed, Mario Petrou, Ravi De Silva, Shapour Jalilzadeh, Michael Demosthenous, Constantinos Bakogiannis, Dimitris Tousoulis, Christodoulos Stefanadis, Robin P Choudhury, B

Background

Adiponectin is an adipokine with potentially important roles in human cardiovascular disease states. We studied the role of adiponectin in the cross-talk between adipose tissue and vascular redox state in patients with atherosclerosis.

Conclusions

We demonstrate for the first time that adiponectin improves the redox state in human vessels by restoring eNOS coupling, and we identify a novel role of vascular oxidative stress in the regulation of adiponectin expression in human perivascular adipose tissue.

Results

The study included 677 patients undergoing coronary artery bypass graft surgery. Endothelial function was evaluated by flow-mediated dilation of the brachial artery in vivo and by vasomotor studies in saphenous vein segments ex vivo. Vascular superoxide (O2(-)) and endothelial nitric oxide synthase (eNOS) uncoupling were quantified in saphenous vein and internal mammary artery segments. Local adiponectin gene expression and ex vivo release were quantified in perivascular (saphenous vein and internal mammary artery) subcutaneous and mesothoracic adipose tissue from 248 patients. Circulating adiponectin was independently associated with nitric oxide bioavailability and O2(-) production/eNOS uncoupling in both arteries and veins. These findings were supported by a similar association between functional polymorphisms in the adiponectin gene and vascular redox state. In contrast, local adiponectin gene expression/release in perivascular adipose tissue was positively correlated with O2(-) and eNOS uncoupling in the underlying vessels. In ex vivo experiments with human saphenous veins and internal mammary arteries, adiponectin induced Akt-mediated eNOS phosphorylation and increased tetrahydrobiopterin bioavailability, improving eNOS coupling. In ex vivo experiments with human saphenous veins/internal mammary arteries and adipose tissue, we demonstrated that peroxidation products produced in the vascular wall (ie, 4-hydroxynonenal) upregulate adiponectin gene expression in perivascular adipose tissue via a peroxisome proliferator-activated receptor-γ-dependent mechanism. Conclusions: We demonstrate for the first time that adiponectin improves the redox state in human vessels by restoring eNOS coupling, and we identify a novel role of vascular oxidative stress in the regulation of adiponectin expression in human perivascular adipose tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。