Structural and functional characterization of cyclic pyrimidine-regulated anti-phage system

环状嘧啶调节抗噬菌体系统的结构和功能表征

阅读:7
作者:Mei-Hui Hou #, Chao-Jung Chen #, Chia-Shin Yang, Yu-Chuan Wang, Yeh Chen

Abstract

3',5'-cyclic uridine monophosphate (cUMP) and 3',5'-cyclic cytidine monophosphate (cCMP) have been established as bacterial second messengers in the phage defense system, named pyrimidine cyclase system for anti-phage resistance (Pycsar). This system consists of a pyrimidine cyclase and a cyclic pyrimidine receptor protein. However, the molecular mechanism underlying cyclic pyrimidine synthesis and recognition remains unclear. Herein, we determine the crystal structures of a uridylate cyclase and a cytidylate cyclase, revealing the conserved residues for cUMP and cCMP production, respectively. In addition, a distinct zinc-finger motif of the uridylate cyclase is identified to confer substantial resistance against phage infections. Furthermore, structural characterization of cUMP receptor protein PycTIR provides clear picture of specific cUMP recognition and identifies a conserved N-terminal extension that mediates PycTIR oligomerization and activation. Overall, our results contribute to the understanding of cyclic pyrimidine-mediated bacterial defense.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。