Autophagy-inhibiting polymer as an effective nonviral cancer gene therapy vector with inherent apoptosis-sensitizing ability

自噬抑制聚合物作为一种有效的非病毒癌症基因治疗载体,具有固有的凋亡敏感能力

阅读:8
作者:Jiafeng Wang, Xuefei Zhou, Huifang Wang, Qian Xiao, Kefeng Ding, Xue Dong, Shufeng Xu, Bo Shen, Jihong Sun, Zhuxian Zhou, Jianbin Tang, Xiangrui Liu, Youqing Shen

Abstract

Conventionally, polycations are pharmacological inert used as nonviral gene delivery vectors with the sole function of compacting and protecting nucleic acids. Here, the first autophagy-inhibiting cationic polymer delivering plasmid DNA (pDNA) encoding TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is prepared for cancer gene therapy. The copolymerization of methacryloyl chloroquine (MACQ) with 2-(dimethylamino)ethyl methacrylate (DMAEMA) not only improves transfection efficacy through hydrophobic modification, but also endows the copolymer with autophagy-blocking capability, which further sensitizes cancer cells to TRAIL induced apoptosis. Importantly, the designed copolymer shows efficient TRAIL expression, autophagy inhibition and enhances TRAIL-induced apoptosis in an autophagy-dependent manner. In contrast, TRAIL gene delivered by the autophagy-blocking-deficient control copolymer without the chlorine atom presents weaker antitumor efficacy, although expressing a similar amount of therapeutic TRAIL protein. Thus, this study demonstrates a conceptually new approach in which the therapeutic outcome of the delivered gene can be inherently strengthened by the delivery vehicle with intrinsic pharmacological activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。