Dankasterone A induces prostate cancer cell death by inducing oxidative stress

丹卡酮 A 通过诱导氧化应激诱导前列腺癌细胞死亡

阅读:6
作者:Xia Gan, Mingyi Nie, Siying Cai, Yonghong Liu, Fan Zhang, Xiaotao Feng, Yunqiu Li, Bin Yang, Xueni Wang

Abstract

Oxidative stress plays a dual role in tumor survival, either promoting tumor development or killing tumor cells under different conditions. Dankasterone A is a secondary metabolite derived from the fungus Talaromyces purpurogenu. It showed good potential in a screen for anti-prostate cancer compounds. In this study, MTT results showed dankasterone A was cytotoxic to prostate cancer cells, with an IC50 of 5.10 μM for PC-3 cells and 3.41 μM for 22Rv1 cells. Further studies, plate cloning assays and real-time cell analysis monitoring showed that dankasterone A significantly inhibited clonal colony formation and cell migration in 22Rv1 and PC-3 cells. In addition, flow cytometry results showed that dankasterone A induced apoptosis in prostate cancer cells while having no impact on cell cycle distribution. At the molecular level, Protein microarray experiments and western blot assays revealed that dankasterone A specifically and dramatically upregulated HO-1 protein expression; and the results of cell fluorescence staining showed that dankasterone A induced overexpression of reactive oxygen species in 22Rv1 and PC-3 cells. Taken together, dankasterone A induced prostate cancer cells to undergo intense oxidative stress, which resulted in the production of large amounts of HO-1 and the release of large amounts of reactive oxygen species, leading to apoptosis of prostate cancer cells, ultimately resulting in the inhibition of both cell proliferation and migration. We also validated the anti-prostate cancer effects of dankasterone A in vivo in a zebrafish xenograft tumor model. In conclusion, dankasterone A has the potential to be developed as an anti-prostate cancer drug.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。