In vitro toxicity assessment of respirable solid surface composite sawing particles

可吸入固体表面复合锯切颗粒的体外毒性评估

阅读:6
作者:W Kyle Mandler, Seungkoo Kang, Mariana Farcas, Chaolong Qi, Sherri A Friend, Yong Qian

Abstract

Solid surface composites (SSCs) are a class of popular construction materials composed of aluminum trihydrate and acrylic polymers. Previous investigations have demonstrated that sawing SSC releases substantial airborne dusts, with a number-based geometric mean diameter of 1.05 µm. We reported that in mice, aspiration exposure to airborne SSC dusts induced symptoms of pulmonary inflammation at 24-h postexposure: neutrophilic influx, alveolitis, and increased lactate dehydrogenase (LDH) and pro-inflammatory cytokine levels in lavage fluid. The particles appeared to be poorly cleared, with 81% remaining at 14-day postexposure. The objective of this study was to determine the toxicity specifically of respirable particles on a model of human alveolar macrophages (THP-1). The relative toxicities of subfractions (0.07, 0.66, 1.58, 5.0, and 13.42 µm diameter) of the airborne particles were also determined. THP-1 macrophages were exposed for 24 h to respirable particles from sawing SSC (0, 12.5, 25, 50, or 100 µg/ml) or size-specific fractions (100 µg/ml). Exposure to respirable SSC particles induced THP-1 macrophage toxicity in a dose-dependent manner. Viability was decreased by 15% and 19% after exposure to 50 and 100 µg/ml SSC, respectively, which correlated with increased cell culture supernatant LDH activity by 40% and 70% when compared to control. Reactive oxygen species (ROS) production and inflammatory cytokines were increased in a dose-dependent manner. A size-dependent cytotoxic effect was observed in the cells exposed to subfractions of SSC particles. SSC particles of 0.07, 0.66, and 1.58 µm diameter killed 36%, 17%, and 22% of cells, respectively. These results indicate a potential for cytotoxicity of respirable SSC particles and a relationship between particle size and toxicity, with the smallest fractions appearing to exhibit the greatest toxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。