SPRR3, a novel miR-338-3p target, regulates the malignant progression of clear cell renal cell carcinoma in vitro via the PI3K/Akt signaling pathway

SPRR3 是一种新的 miR-338-3p 靶点,其通过 PI3K/Akt 信号通路体外调控透明细胞肾细胞癌的恶性进展

阅读:9
作者:Man Wu, Qiaoyan Guo, Xianjun Liu, Linlin Wu

Abstract

Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cell carcinoma and has a poor prognosis. However, its underlying mechanisms remain unclear. The present study aimed to evaluate the role of small proline-rich repeat protein 3 (SPRR3) in the proliferation, migration and invasion of ccRCC cells and to investigate its upstream and downstream regulatory mechanisms. Survival analysis was performed using the UALCAN website based on the The Cancer Genome Atlas database. Normal renal cell line HK-2 and ccRCC cell lines (786-O, CaKi-1 and UMRC-2) were used. Reverse transcription-quantitative PCR (RT-qPCR) was used to detect mRNA and microRNA (miRNA) levels. Western blotting was used to detect protein levels. Cell Counting Kit-8 and colony formation assays, a wound healing assay and a Transwell invasion assay were used to assess the proliferation, migration and invasion of ccRCC cells, respectively. Transfection of overexpression plasmids and small interfering RNAs were used to upregulate and knockdown SPRR3 expression, respectively. Transfection of miRNA-mimics was used to overexpress miR-338-3p. A luciferase reporter gene assay was used to verify the predicted binding relationship between SPRR3 mRNA and miR-338-3p. The results indicated the following: i) SPRR3 was a risk factor for the survival of patients with ccRCC, and was upregulated in ccRCC cell lines; ii) SPRR3 promoted the proliferation, migration and invasion of ccRCC cells; iii) SPRR3 regulated the tumor phenotypes of ccRCC cells via the PI3K/Akt pathway; iv) miR-338-3p directly targeted SPRR3 mRNA and negatively regulated SPRR3 expression; and v) miR-338-3p inhibited the PI3K/Akt pathway and the tumor phenotypes of ccRCC cells by downregulating SPRR3. In conclusion, SPRR3, as a novel target of miR-338-3p, regulated the proliferation, migration and invasion of ccRCC cells via the PI3K/Akt pathway; this finding not only enriches our understanding of the mechanism underlying ccRCC development, but also demonstrates a potential novel therapeutic target for this disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。