Dl-3-n-butylphthalide alleviates cognitive impairment in amyloid precursor protein/presenilin 1 transgenic mice by regulating the striatal-enriched protein tyrosine phosphatase/ERK/cAMP-response element-binding protein signaling pathway

dl-3-n-丁基苯酞通过调节纹状体富集的蛋白酪氨酸磷酸酶/ERK/cAMP 反应元件结合蛋白信号通路减轻淀粉样蛋白前体/早老素 1 转基因小鼠的认知障碍

阅读:6
作者:Yan Zhao, Wen-Qiang Yang, Lu Yu, Jing Yang, Hai-Rong Zhu, Lin Zhang

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive impairment and the deposition of amyloid plaques in the brain. In a transgenic mouse model of AD, cognitive impairment and synaptic dysfunction were revealed to be associated with soluble amyloid oligomers and to occur prior to plaque formation. The results of our previous studies revealed that striatal-enriched protein tyrosine phosphatase (STEP)61 negatively regulated the β-amyloid protein-mediated ERK/cAMP-response element-binding protein (CREB) signaling pathway. Dl-3-n-butylphthalide (NBP) is a synthetic compound approved by the Food and Drug Administration of China for the treatment of ischemic stroke in 2002. Studies have shown that the neuroprotective effects of NBP involve multiple mechanisms. The present study further explored the mechanism of NBP therapy in amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mice, and the involvement of the STEP/ERK/CREB signaling pathway. The results suggested that NBP treatment effectively ameliorated the spatial learning and memory impairment of the APP/PS1 transgenic mice, which was assessed using a Morris water maze. In addition, NBP reduced amyloid-induced activation of STEP61 levels, while increasing phosphorylated (p)-ERK1/2 and p-CREB levels in the cerebral cortex and hippocampus of APP/PS1 transgenic mice by western blotting and immunostaining. In conclusion, the present study provided evidence to suggest that the new drug NBP improved amyloid-induced learning and memory deficits, likely through the regulation of the STEP/ERK/CREB pathway. The results revealed that NBP, as a multi-target drug, may exert a neuroprotective effect. Therefore, NBP may serve as an effective treatment for AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。