GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism

GCN2 通过 ATF4 独立机制促进亮氨酸剥夺对 mTORC1 的抑制

阅读:9
作者:Julien Averous, Sarah Lambert-Langlais, Florent Mesclon, Valérie Carraro, Laurent Parry, Céline Jousse, Alain Bruhat, Anne-Catherine Maurin, Philippe Pierre, Christopher G Proud, Pierre Fafournoux

Abstract

It is well known that the GCN2 and mTORC1 signaling pathways are regulated by amino acids and share common functions, in particular the control of translation. The regulation of GCN2 activity by amino acid availability relies on the capacity of GCN2 to sense the increased levels of uncharged tRNAs upon amino acid scarcity. In contrast, despite recent progress in the understanding of the regulation of mTORC1 by amino acids, key aspects of this process remain unsolved. In particular, while leucine is well known to be a potent regulator of mTORC1, the mechanisms by which this amino acid is sensed and control mTORC1 activity are not well defined. Our data establish that GCN2 is involved in the inhibition of mTORC1 upon leucine or arginine deprivation. However, the activation of GCN2 alone is not sufficient to inhibit mTORC1 activity, indicating that leucine and arginine exert regulation via additional mechanisms. While the mechanism by which GCN2 contributes to the initial step of mTORC1 inhibition involves the phosphorylation of eIF2α, we show that it is independent of the downstream transcription factor ATF4. These data point to a novel role for GCN2 and phosphorylation of eIF2α in the control of mTORC1 by certain amino acids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。