Resveratrol enhances matrix biosynthesis of nucleus pulposus cells through activating autophagy via the PI3K/Akt pathway under oxidative damage

白藜芦醇在氧化损伤下通过 PI3K/Akt 通路激活自噬增强髓核细胞基质生物合成

阅读:7
作者:Jinlou Gao, Qingyun Zhang, Lin Song

Abstract

The decrease in nucleus pulposus (NP) matrix production is a classic feature during disc degeneration. Resveratrol (RSV) is reported to play protective effects under many pathological factors.The present study aims to study the effects of RSV on NP matrix homeostasis under oxidative damage and the potential mechanism. Rat NP cells were exposed to H2O2 solution to create an oxidative damage. RSV and the 3-methyladenine (3-MA) were added along with the culture medium to respectively investigate the role of RSV and cellular autophagy. NP matrix synthesis was evaluated by the expression of macromolecules (aggrecan and collagen II) and glycosaminoglycan (GAG) content. Activation of cellular autophagy was assessed by the expression of several molecular markers. Additionally, activity of the PI3K/Akt pathway was also evaluated to study its potential role. Compared with the control group (NP cells treated with H2O2), RSV significantly up-regulated expression of matrix macromolecules (aggrecan and collagen), promoted GAG production, and increased the expression of autophagy-related markers (Beclin-1 and LC-3). Further analysis showed that inhibition of autophagy by 3-MA partly attenuated NP matrix production. Additionally, RSV increased activity of the PI3K/Akt pathway compared with the control NP cells, but it was not affected by the addition of 3-MA. RSV plays a protective role in enhancing NP matrix synthesis under oxidative damage. Mechanistically, activation of the cellular autophagy via the PI3K/Akt pathway may participate in this process. RSV may be an effective drug to attenuate oxidative stress-induced disc degeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。