Endo-1,3(4)-β-Glucanase-Treatment of Oat β-Glucan Enhances Fermentability by Infant Fecal Microbiota, Stimulates Dectin-1 Activation and Attenuates Inflammatory Responses in Immature Dendritic Cells

内切-1,3(4)-β-葡聚糖酶处理燕麦 β-葡聚糖可增强婴儿粪便微生物群的发酵能力、刺激 Dectin-1 活化并减弱未成熟树突状细胞的炎症反应

阅读:5
作者:Renate Akkerman, Madelon J Logtenberg, Ran An, Marco A Van Den Berg, Bart J de Haan, Marijke M Faas, Erwin Zoetendal, Paul de Vos, Henk A Schols

Background

Non-digestible carbohydrates are added to infant formula to mimic the effects of human milk oligosaccharide by acting as prebiotics and stimulating the immune system. Although not yet used in infant formulas, β-glucans are known to have beneficial health effects, and are therefore of potential interest for supplementation.

Conclusion

Our findings demonstrate that endo-1,3(4)-β-glucanase treatment enhances the fermentability of oat β-glucan and attenuates pro-inflammatory responses. Hence, this study shows that especially enzyme-treated oat β-glucans have a high potential for supplementation of infant formula.

Results

We investigated the in vitro fermentation of native and endo-1,3(4)-β-glucanase-treated oat β-glucan using pooled fecal inocula of 2- and 8-week-old infants. While native oat β-glucan was not utilized, both inocula specifically utilized oat β-glucan oligomers containing β(1→4)-linkages formed upon enzyme treatment. The fermentation rate was highest in the fecal microbiota of 2-week-old infants, and correlated with a high lactate production. Fermentation of media supplemented with native and enzyme-treated oat β-glucans increased the relative abundance of Enterococcus and attenuated pro-inflammatory cytokine production (IL-1β, IL-6, TNFα) in immature dendritic cells. This attenuating effect was more pronounced after enzyme treatment. This attenuation might result from the enhanced ability of fermented oat β-glucan to stimulate Dectin-1 receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。