MicroRNA-34a affects chondrocyte apoptosis and proliferation by targeting the SIRT1/p53 signaling pathway during the pathogenesis of osteoarthritis

MicroRNA-34a 在骨关节炎发病过程中通过靶向 SIRT1/p53 信号通路影响软骨细胞凋亡和增殖

阅读:8
作者:Shiju Yan, Meng Wang, Jian Zhao, Hongtao Zhang, Chengpei Zhou, Lei Jin, Yinglong Zhang, Xiuchun Qiu, Baoan Ma, Qingyu Fan

Abstract

Osteoarthritis (OA) is the most prevalent degenerative joint disease with multifactorial etiology caused by risk factors such as ageing, obesity and trauma. Previously, it was reported that the inhibition of microRNA-34a (miR-34a) may reduce rat chondrocyte apoptosis induced by IL-1β, whereas the molecular mechanism and the role of miR-34a in human chondrocyte as well as in OA progression remains to be determined. In the current study, using MTT, luciferase reporter assays and western blot analysis we identified that miR-34a was upregulated while silent information regulator 1 (SIRT1) was inhibited in chondrocytes from 12 OA patients compared with healthy chondrocytes from 10 trauma amputees. Overexpression of miR-34a promoted apoptosis and inhibited cell proliferation in human chondrocytes. Transfection with miR-34a mimic inhibited SIRT1 expression, which attenuated the deacetylation of p53, leading to the upregulation of Bax and downregulation of Bcl-2. Furthermore, results from the western blot analysis and luciferase reporter assay demonstrated that SIRT1 was directly regulated by miR-34a in human chondrocytes. A rat model of OA was induced through anterior cruciate ligament transection and medial meniscus resection (ACLT+MMx). The results showed that the intra‑articular injection of lentiviral vector encoding anti-miR‑34a sequence effectively ameliorated the progression of OA. The results suggest that miR-34a has a crucial role in the pathogenesis of OA through direct regulation of the SIRT1/p53 signaling pathway and serves as a potential therapeutic target of OA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。