Synergetic Enhancement of Tumor Double-Targeted MRI Nano-Probe

肿瘤双靶向MRI纳米探针的协同增强

阅读:8
作者:Nikita Yabbarov, Elena Nikolskaya, Maria Sokol, Mariia Mollaeva, Margarita Chirkina, Irina Seregina, Mikhail Gulyaev, Yury Pirogov, Rem Petrov

Abstract

The conventional targeted delivery of chemotherapeutic and diagnostic agents utilizing nanocarriers is a promising approach for cancer theranostics. Unfortunately, this approach often faces hindered tumor access that decreases the therapeutic index and limits the further clinical translation of a developing drug. Here, we demonstrated a strategy of simultaneously double-targeting the drug to two distinct cites of tumor tissue: the tumor endothelium and cell surface receptors. We used fourth-generation polyamideamine dendrimers modified with a chelated Gd and functionalized with selectin ligand and alpha-fetoprotein receptor-binding peptide. According to the proposed strategy, IELLQAR peptide promotes the conjugate recruitment to the tumor inflammatory microenvironment and enhances extravasation through the interaction of nanodevice with P- and E-selectins expressed by endothelial cells. The second target moiety-alpha-fetoprotein receptor-binding peptide-enhances drug internalization into cancer cells and the intratumoral retention of the conjugate. The final conjugate contained 18 chelated Gd ions per dendrimer, characterized with a 32 nm size and a negative surface charge of around 18 mV. In vitro contrasting properties were comparable with commercially available Gd-chelate: r1 relaxivity was 3.39 for Magnevist and 3.11 for conjugate; r2 relaxivity was 5.12 for Magnevist and 4.81 for conjugate. By utilizing this dual targeting strategy, we demonstrated the increment of intratumoral accumulation, and a remarkable enhancement of antitumor effect, resulting in high-level synergy compared to monotargeted conjugates. In summary, the proposed strategy utilizing tumor tissue double-targeting may contribute to an enhancement in drug and diagnostic accumulation in aggressive tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。