TRPC5 is essential in endothelium-dependent contraction of aorta from diet-induced obese mice

TRPC5 在饮食诱导的肥胖小鼠主动脉内皮依赖性收缩中起重要作用

阅读:4
作者:Yifei Zhu, Sheng Wang, Yuan Chu, Ka Zhang, Xin Wen, Lei Feng, Fan Yu, Xin Ma

Abstract

The role of the Ca2+-permeable ion channel TRPC5 in regulating vasocontraction in obesity is poorly understood. Here, we investigated whether TRPC5 contributes to vascular dysfunction in obesity by promoting endothelium-dependent contraction via activation of cytosolic phospholipase A2 (cPLA2) in the aortic endothelial cells of obese mice. Acetylcholine-induced endothelium-dependent relaxation and contraction in the aorta were measured using wire myography. PLA2 activity was measured by the fluorogenic PLA2 substrate Bis-BODIPY™ FL C11-PC. The intracellular Ca2+ level in response to acetylcholine was measured by Fluo-4 fluorescence. Endothelium-derived contracting factors were assessed by enzyme immunoassay. Diet-induced obesity (DIO) attenuated endothelium-dependent vasodilation, enhanced endothelium-dependent contraction (EDC), and increased the expression of TRPC5 in the mouse aorta. Activation of TRPC5 promoted EDC in the wild-type mouse aorta, whereas pharmacological inhibition and genetic knockout of TRPC5 decreased EDC in the DIO mouse aorta. Moreover, cPLA2 phosphorylation and activity were higher in aortic endothelial cells from DIO mice, and this was attenuated by inhibition and knockout of TRPC5. Cyclooxygenase 2 (COX-2) expression was increased in DIO mouse endothelium and was decreased by a TRPC5 inhibitor and knockout of TRPC5. Release of prostaglandins F2α (PGF2α) and E2 (PGE2) was involved in TRPC5-regulated EDC in DIO mice. This study demonstrated that TRPC5 contributes to endothelial and vascular dysfunction and is involved in EDC through activation of cPLA2 and enhanced COX-2-PGF2α/PGE2 levels in DIO mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。