Hematopoietic Stem Cells but Not Multipotent Progenitors Drive Erythropoiesis during Chronic Erythroid Stress in EPO Transgenic Mice

在 EPO 转基因小鼠的慢性红细胞应激期间,造血干细胞而非多能祖细胞驱动红细胞生成

阅读:7
作者:Rashim Pal Singh, Tatyana Grinenko, Beáta Ramasz, Kristin Franke, Mathias Lesche, Andreas Dahl, Max Gassmann, Triantafyllos Chavakis, Ian Henry, Ben Wielockx

Abstract

The hematopoietic stem cell (HSC) compartment consists of a small pool of cells capable of replenishing all blood cells. Although it is established that the hematopoietic system is assembled as a hierarchical organization under steady-state conditions, emerging evidence suggests that distinct differentiation pathways may exist in response to acute stress. However, it remains unclear how different hematopoietic stem and progenitor cell subpopulations behave under sustained chronic stress. Here, by using adult transgenic mice overexpressing erythropoietin (EPO; Tg6) and a combination of in vivo, in vitro, and deep-sequencing approaches, we found that HSCs respond differentially to chronic erythroid stress compared with their closely related multipotent progenitors (MPPs). Specifically, HSCs exhibit a vastly committed erythroid progenitor profile with enhanced cell division, while MPPs display erythroid and myeloid cell signatures and an accumulation of uncommitted cells. Thus, our results identify HSCs as master regulators of chronic stress erythropoiesis, potentially circumventing the hierarchical differentiation-detour.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。