Brain Functional Network and Amino Acid Metabolism Association in Females with Subclinical Depression

亚临床抑郁症女性脑功能网络与氨基酸代谢关联

阅读:10
作者:Shanguang Zhao, Selina Khoo, Siew-Cheok Ng, Aiping Chi

Abstract

This study aimed to investigate the association between complex brain functional networks and the metabolites in urine in subclinical depression. Electroencephalography (EEG) signals were recorded from 78 female college students, including 40 with subclinical depression (ScD) and 38 healthy controls (HC). The phase delay index was utilized to construct functional connectivity networks and quantify the topological properties of brain networks using graph theory. Meanwhile, the urine of all participants was collected for non-targeted LC-MS metabolic analysis to screen differential metabolites. The global efficiency was significantly increased in the α-2, β-1, and β-2 bands, while the characteristic path length of β-1 and β-2 and the clustering coefficient of β-2 were decreased in the ScD group. The severity of depression was negatively correlated with the level of cortisone (p = 0.016, r = -0.40). The metabolic pathways, including phenylalanine metabolism, phenylalanine tyrosine tryptophan biosynthesis, and nitrogen metabolism, were disturbed in the ScD group. The three metabolic pathways were negatively correlated (p = 0.014, r = -0.493) with the global efficiency of the brain network of the β-2 band, whereas they were positively correlated (p = 0.014, r = 0.493) with the characteristic path length of the β-2 band. They were mainly associated with low levels of L-phenylalanine, and the highest correlation sparsity was 0.11. The disturbance of phenylalanine metabolism and the phenylalanine, tryptophan, tyrosine biosynthesis pathways cause depressive symptoms and changes in functional brain networks. The decrease in the L-phenylalanine level may be related to the randomization trend of the β-1 frequency brain functional network.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。