Rehydration Driven Acid Impregnation of Thermally Pretreated Ca-Bentonite-Evolution of the Clay Structure

热预处理钙基膨润土的再水化驱动酸浸渍——粘土结构的演变

阅读:5
作者:Krzysztof Bahranowski, Agnieszka Klimek, Adam Gaweł, Zbigniew Olejniczak, Ewa M Serwicka

Abstract

A new approach to acid activation of raw Ca-bentonite was explored. The method consisted in dehydration of clay by thermal pretreatment at 200 °C, followed by immediate impregnation with H2SO4 solution. The acid concentration was 1.5 × or 2.0 × cation exchange capacity (CEC) of clay. The volume of the liquid was adjusted so as to leave the material in the apparently dry state. Structural evolution of the activated solids after 1, 2, 3, and 4 weeks of storage was monitored with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), 27Al magic angle spinning nuclear magnetic resonance (MAS NMR), and chemical analysis. In the macroscopically dry solids, the rehydrated interlayer Ca2+ underwent rapid exchange with H3O+ and formed extra-framework gypsum. Acid attack on montmorillonite structure resulted in continuous removal of layer forming Mg, Al, and Fe cations, with Mg2+ being eliminated most efficiently. No significant damage to the montmorillonite lattice was observed. Al was extracted both from the tetrahedral and the octahedral sheets. Under less acidic conditions, the monohydrated H-montmorillonite changed upon storage to bi-hydrated form, as a result of clay auto-transformation. Higher concentrations of acid in the pore network of clay stabilized the H-form of montmorillonite. The data indicate that compositional transformation of acid impregnated bentonite extended beyond the one month of aging investigated in the present work.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。