The tachykinin NK3 receptor agonist senktide induces locomotor activity in male Mongolian gerbils

速激肽 NK3 受体激动剂 senktide 诱导雄性蒙古沙鼠的运动活动

阅读:5
作者:Rebecca E Nordquist, Sean Durkin, Aurélie Jacquet, Will Spooren

Abstract

The tachykinin family of receptors has been of strong interest recently due to the potential of the tachykinin NK(3) receptor antagonism in treatment of schizophrenia. However, critical differences in the tachykinin NK(3) receptor between rats, mice and humans make rats and mice less acceptable species for testing tachykinin NK(3) receptor antagonism. This has led to testing of tachykinin NK(3) receptor activity in gerbils and guinea pigs. As these species are much less common laboratory animals than rats and mice, there is a relative paucity of in vivo testing models for tachykinin NK(3) receptor activation. In the present study, locomotor activity induced by the tachykinin NK(3) receptor agonist senktide was characterized. Injection of senktide i.c.v. was found to dose-dependently induce hyperlocomotion from a dose of 0.06 nmol to the maximal dose tested, 0.6 nmol. Locomotion induced by 0.1 nmol of senktide could be blocked by injection of the tachykinin NK(3) receptor antagonists SB222200 (10 and 30 mg/kg i.p.) and talnetant (SB223412; 10 and 30 mg/kg i.p.), as well as by osanetant (SR142801; 10 and 30 mg/kg i.p.) when administered in a vehicle containing vitamin E and glycofurol. Senktide-induced activity was also reversed by the antipsychotics haloperidol (0.3 and 1 mg/kg p.o.) and risperidone (1 mg/kg p.o.), but not by the serotonin 5HT(2a/c) receptor antagonist MDL100907 (tested at 0.1, 0.3 and 1 mg/kg p.o.). Hyperlocomotion induced by 0.03 nmol of senktide was potentiated by antagonism of the tachykinin NK(1) receptor with aprepitant (1, 3 and 10 mg/kg, p.o.). Thus, hyperlocomotion induced by senktide in gerbils is a tachykinin NK(3) receptor-mediated behavior that is appropriate for use in testing tachykinin NK(3) receptor activity of novel compounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。