Proteins and Molecular Pathways Relevant for the Malignant Properties of Tumor-Initiating Pancreatic Cancer Cells

与肿瘤起始胰腺癌细胞恶性特性相关的蛋白质和分子通路

阅读:4
作者:Lisa Samonig, Andrea Loipetzberger, Constantin Blöchl, Marc Rurik, Oliver Kohlbacher, Fritz Aberger, Christian G Huber

Abstract

Cancer stem cells (CSCs), a small subset of the tumor bulk with highly malignant properties, are deemed responsible for tumor initiation, growth, metastasis, and relapse. In order to reveal molecular markers and determinants of their tumor-initiating properties, we enriched rare stem-like pancreatic tumor-initiating cells (TICs) by harnessing their clonogenic growth capacity in three-dimensional multicellular spheroid cultures. We compared pancreatic TICs isolated from three-dimensional tumor spheroid cultures with nontumor-initiating cells (non-TICs) enriched in planar cultures. Employing differential proteomics (PTX), we identified more than 400 proteins with significantly different expression in pancreatic TICs and the non-TIC population. By combining the unbiased PTX with mRNA expression analysis and literature-based predictions of pro-malignant functions, we nominated the two calcium-binding proteins S100A8 (MRP8) and S100A9 (MRP14) as well as galactin-3-binding protein LGALS3BP (MAC-2-BP) as putative determinants of pancreatic TICs. In silico pathway analysis followed by candidate-based RNA interference mediated loss-of-function analysis revealed a critical role of S100A8, S100A9, and LGALS3BP as molecular determinants of TIC proliferation, migration, and in vivo tumor growth. Our study highlights the power of combining unbiased proteomics with focused gene expression and functional analyses for the identification of novel key regulators of TICs, an approach that warrants further application to identify proteins and pathways amenable to drug targeting.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。