A Validated Preclinical Animal Model for Primary Bone Tumor Research

经验证的原发性骨肿瘤研究临床前动物模型

阅读:8
作者:Ferdinand Wagner, Boris M Holzapfel, Laure Thibaudeau, Melanie Straub, Ming-Tat Ling, Joachim Grifka, Daniela Loessner, Jean-Pierre Lévesque, Dietmar W Hutmacher

Background

Despite the introduction of 21st-century surgical and neoadjuvant treatment modalities, survival of patients with osteosarcoma (OS) has not improved in two decades. Advances will depend in part on the development of clinically relevant and reliable animal models. This report describes the engineering and validation of a humanized tissue-engineered bone organ (hTEBO) for preclinical research on primary bone tumors in order to minimize false-positive and false-negative

Conclusions

We report an in vivo model that contains human bone matrix and marrow components in one organ. BMP-7 made it possible to maintain viable mesenchymal and hematopoietic stem cells and created a bone microenvironment mimicking human physiology. Clinical relevance: This novel platform enables preclinical research on primary bone tumors in order to test new treatment options.

Methods

Pelvic bone and marrow fragments were harvested from patients during reaming of the acetabulum during hip arthroplasty. HTEBOs were engineered by embedding fragments in a fibrin matrix containing bone morphogenetic protein-7 (BMP-7) and implanted into NOD-scid mice. After 10 weeks of subcutaneous growth, one group of hTEBOs was harvested to analyze the degree of humanization. A second group was injected with human luciferase-labeled OS (Luc-SAOS-2) cells. Tumor growth was followed in vivo with bioluminescence imaging. After 5 weeks, the OS tumors were harvested and analyzed. They were also compared with tumors created via intratibial injection.

Results

After 10 weeks of in vivo growth, a new bone organ containing human bone matrix as well as viable and functional human hematopoietic cells developed. Five weeks after injection of Luc-SAOS-2 cells into this humanized bone microenvironment, spontaneous metastatic spread to the lung was evident. Relevant prognostic markers such as vascular endothelial growth factor (VEGF) and periostin were found to be positive in OS tumors grown within the humanized microenvironment but not in tumors created in murine tibial bones. Hypoxia-inducible transcription factor-2α (HIF-2α) was detected only in the humanized OS. Conclusions: We report an in vivo model that contains human bone matrix and marrow components in one organ. BMP-7 made it possible to maintain viable mesenchymal and hematopoietic stem cells and created a bone microenvironment mimicking human physiology. Clinical relevance: This novel platform enables preclinical research on primary bone tumors in order to test new treatment options.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。