Hominin-specific regulatory elements selectively emerged in oligodendrocytes and are disrupted in autism patients

人类特异性调控元件选择性地出现在少突胶质细胞中,并在自闭症患者中被破坏

阅读:7
作者:Bas Castelijns, Mirna L Baak, Ilia S Timpanaro, Caroline R M Wiggers, Marit W Vermunt, Peng Shang, Ivanela Kondova, Geert Geeven, Valerio Bianchi, Wouter de Laat, Niels Geijsen, Menno P Creyghton

Abstract

Speciation is associated with substantial rewiring of the regulatory circuitry underlying the expression of genes. Determining which changes are relevant and underlie the emergence of the human brain or its unique susceptibility to neural disease has been challenging. Here we annotate changes to gene regulatory elements (GREs) at cell type resolution in the brains of multiple primate species spanning most of primate evolution. We identify a unique set of regulatory elements that emerged in hominins prior to the separation of humans and chimpanzees. We demonstrate that these hominin gains perferentially affect oligodendrocyte function postnatally and are preferentially affected in the brains of autism patients. This preference is also observed for human-specific GREs suggesting this system is under continued selective pressure. Our data provide a roadmap of regulatory rewiring across primate evolution providing insight into the genomic changes that underlie the emergence of the brain and its susceptibility to neural disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。