Initiation of B-type starch granules in wheat endosperm requires the plastidial α-glucan phosphorylase PHS1

小麦胚乳中 B 型淀粉颗粒的起始需要质体 α-葡聚糖磷酸化酶 PHS1

阅读:5
作者:Nitin Uttam Kamble, Farrukh Makhamadjonov, Brendan Fahy, Carlo Martins, Gerhard Saalbach, David Seung

Abstract

The plastidial α-glucan phosphorylase (PHS1) can elongate and degrade maltooligosaccharides (MOSs), but its exact physiological role in plants is poorly understood. Here, we discover a specialized role of PHS1 in establishing the unique bimodal characteristic of starch granules in wheat (Triticum spp.) endosperm. Wheat endosperm contains large A-type granules that initiate at early grain development and small B-type granules that initiate in later grain development. We demonstrate that PHS1 interacts with B-GRANULE CONTENT1 (BGC1), a carbohydrate-binding protein essential for normal B-type granule initiation. Mutants of tetraploid durum wheat (Triticum turgidum) deficient in all homoeologs of PHS1 had normal A-type granules but fewer and larger B-type granules. Grain size and starch content were not affected by the mutations. Further, by assessing granule numbers during grain development in the phs1 mutant and using a double mutant defective in both PHS1 and BGC1, we demonstrate that PHS1 is exclusively involved in B-type granule initiation. The total starch content and number of starch granules per chloroplast in leaves were not affected by loss of PHS1, suggesting that its role in granule initiation in wheat is limited to the endosperm. We therefore propose that the initiation of A- and B-type granules occurs via distinct biochemical mechanisms, where PHS1 plays an exclusive role in B-type granule initiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。