Radiation-induced cellular senescence results from a slippage of long-term G2 arrested cells into G1 phase

辐射诱导的细胞衰老是由于长期 G2 期停滞的细胞滑入 G1 期

阅读:5
作者:Caiyong Ye, Xurui Zhang, Jianghua Wan, Lei Chang, Wentao Hu, Zhitong Bing, Sheng Zhang, Junhong Li, Jinpeng He, Jufang Wang, Guangming Zhou

Abstract

Diploid cells undergoing senescence and mitotic slippage have been reported in the literature. However, the mechanisms triggering senescence in long-term G2-arrested cells are currently unclear. Previously, we reported that the cell cycle of the human uveal melanoma cell line, 92-1, is suspended for up to 6 d upon exposure to 10 Gy ionizing radiation (IR), followed by senescence. In the current study, we initially distinguished senescence in long-term blocked 92-1 cells from mitotic slippage by confirming the blockage of cells in the G2 phase. We subsequently showed that the genes essential for G2-M transition are prematurely downregulated at both the transcriptional and translational levels. Furthermore, levels of the G1-specific markers, Cyclin D1 and Caveolin-1, were distinctly increased, while S/G2-specific markers, Cyclin B1 and Aurora A, were significantly downregulated. These findings collectively imply that long-term G2-arrested cells undergo senescence via G2 slippage. To our knowledge, this is the first study to report that the cellular process of G2 slippage is the mechanism responsible for senescence of cells under long-term G2 arrest.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。