Thrombomodulin Improves Cognitive Deficits in Heat-Stressed Mice

血栓调节蛋白改善热应激小鼠的认知缺陷

阅读:9
作者:Cheng-Hsien Lin, Ling-Yu Tang, Lin-Yu Wang, Ching-Ping Chang

Background

Thrombomodulin (TM) exerts anticoagulant and anti-inflammatory effects to improve the survival of patients with septic shock. Heat stroke resembles septic shock in many aspects. We tested whether TM would improve cognitive deficits and related causative factors in heat-stressed (HS) mice.

Conclusions

The findings suggest that HS can lead to exacerbated stress reactions, endotoxemia, gut barrier disruption, blood-brain barrier disruption, hippocampal inflammation, coagulopathy, and oxidative stress, which may act as causative factors for cognitive deficits. TM, an anti-inflammatory, antioxidant, and anti-coagulatory agent, inhibited heat stress-induced cognitive deficits in mice.

Methods

Adult male mice were exposed to HS (33°C for 2 hours daily for 7 consecutive days) to induce cognitive deficits. Recombinant human soluble TM (1 mg/kg, i.p.) was administered immediately after the first HS trial and then once daily for 7 consecutive days. We performed the Y-maze, novel objective recognition, and passive avoidance tests to evaluate cognitive function. Plasma levels of lipopolysaccharide (LPS), high-mobility group box 1 (HMGB1), coagulation parameters, and both plasma and tissue levels of inflammatory and oxidative stress markers were biochemically measured. The duodenum and hippocampus sections were immunohistochemically stained. The intestinal and blood-brain barrier permeability were determined.

Results

Compared with controls, HS mice treated with TM had lesser extents of cognitive deficits, exacerbated stress reactions, gut barrier disruption, endotoxemia, blood-brain barrier disruption, and inflammatory, oxidative, and coagulatory injury to heart, duodenum, and hippocampal tissues, and increased plasma HMGB1. In addition to reducing cognitive deficits, TM therapy alleviated all the abovementioned complications in heat-stressed mice. Conclusions: The findings suggest that HS can lead to exacerbated stress reactions, endotoxemia, gut barrier disruption, blood-brain barrier disruption, hippocampal inflammation, coagulopathy, and oxidative stress, which may act as causative factors for cognitive deficits. TM, an anti-inflammatory, antioxidant, and anti-coagulatory agent, inhibited heat stress-induced cognitive deficits in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。