Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood

产前抗苗勒氏管激素升高会重新编程胎儿并在成年期诱发多囊卵巢综合征

阅读:4
作者:Brooke Tata, Nour El Houda Mimouni, Anne-Laure Barbotin, Samuel A Malone, Anne Loyens, Pascal Pigny, Didier Dewailly, Sophie Catteau-Jonard, Inger Sundström-Poromaa, Terhi T Piltonen, Federica Dal Bello, Claudio Medana, Vincent Prevot, Jerome Clasadonte, Paolo Giacobini

Abstract

Polycystic ovary syndrome (PCOS) is the main cause of female infertility worldwide and corresponds with a high degree of comorbidities and economic burden. How PCOS is passed on from one generation to the next is not clear, but it may be a developmental condition. Most women with PCOS exhibit higher levels of circulating luteinizing hormone, suggestive of heightened gonadotropin-releasing hormone (GnRH) release, and anti-Müllerian hormone (AMH) as compared to healthy women. Excess AMH in utero may affect the development of the female fetus. However, as AMH levels drop during pregnancy in women with normal fertility, it was unclear whether their levels were also elevated in pregnant women with PCOS. Here we measured AMH in a cohort of pregnant women with PCOS and control pregnant women and found that AMH is significantly more elevated in the former group versus the latter. To determine whether the elevation of AMH during pregnancy in women with PCOS is a bystander effect or a driver of the condition in the offspring, we modeled our clinical findings by treating pregnant mice with AMH and followed the neuroendocrine phenotype of their female progeny postnatally. This treatment resulted in maternal neuroendocrine-driven testosterone excess and diminished placental metabolism of testosterone to estradiol, resulting in a masculinization of the exposed female fetus and a PCOS-like reproductive and neuroendocrine phenotype in adulthood. We found that the affected females had persistently hyperactivated GnRH neurons and that GnRH antagonist treatment in the adult female offspring restored their neuroendocrine phenotype to a normal state. These findings highlight a critical role for excess prenatal AMH exposure and subsequent aberrant GnRH receptor signaling in the neuroendocrine dysfunctions of PCOS, while offering a new potential therapeutic avenue to treat the condition during adulthood.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。