Microarray Chip-Based High-Throughput Screening of Neurofilament Light Chain Self-Assembling Peptide for Noninvasive Monitoring of Alzheimer's Disease

基于微阵列芯片的神经丝轻链自组装肽高通量筛选用于阿尔茨海默病的无创监测

阅读:9
作者:Ying Zhou, Guoen Cai, Yuanzhuo Wang, Yuxin Guo, Zhimin Yang, Anqi Wang, Yongshou Chen, Xuejie Li, Xiaochun Chen, Zhiyuan Hu, Zihua Wang

Abstract

Alzheimer's disease (AD) starts decades before cognitive symptoms develop. Easily accessible and cost-effective biomarkers that accurately reflect AD pathology are essential for both monitoring and therapeutics of AD. Neurofilament light chain (NfL) levels in blood and cerebrospinal fluid are increased in AD more than a decade before the expected onset, thus providing one of the most promising blood biomarkers for monitoring of AD. The clinical practice of employing single-molecule array (Simoa) technology for routine use in patient care is limited by the high costs. Herein, we developed a microarray chip-based high-throughput screening method and screened an attractive self-assembling peptide targeting NfL. Through directly "imprinting" and further analyzing the sequences, morphology, and affinity of the identified self-assembling peptides, the Pep-NfL peptide nanosheet with high binding affinity toward NfL (KD = 1.39 × 10-9 mol/L), high specificity, and low cost was characterized. The superior binding ability of Pep-NfL was confirmed in AD mouse models and cell lines. In the clinical setting, the Pep-NfL peptide nanosheets hold great potential for discriminating between patients with AD (P < 0.001, n = 37), mild cognitive impairment (P < 0.05, n = 26), and control groups (n = 30). This work provides a high-throughput, high-sensitivity, and economical system for noninvasive tracking of AD to monitor neurodegeneration at different stages of disease. The obtained Pep-NfL peptide nanosheet may be useful for assessing dynamic changes in plasma NfL concentrations to evaluate disease-modifying therapies as a surrogate end point of neurodegeneration in clinical trials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。