Light-activated oxygen self-supplied starving therapy in near-infrared (NIR) window and adjuvant hyperthermia-induced tumor ablation with an augmented sensitivity

近红外 (NIR) 窗口光激活氧自供饥饿疗法和增强灵敏度的辅助热疗肿瘤消融

阅读:7
作者:Junjie Ren, Lei Zhang, Jiayi Zhang, Wei Zhang, Yang Cao, Zhigang Xu, Hongjuan Cui, Yuejun Kang, Peng Xue

Abstract

Glucose oxidase (GOx)-mediated starvation circumvents the energy supply for tumor growth, which has been proved as a potent tumor treatment modality. However, tumor hypoxia negatively affects the efficacy of oxygen-involved glucose decomposition reaction. Moreover, curative effect via glucose depletion is not usually satisfactory enough and adjuvant remedies are always required for a promoted tumor ablation. Herein, a multifunctional nanoreactor based on hollow Bi2Se3 nanoparticles was developed by loading oxygenated perfluorocarbon (PFC) and surface modification with GOx, which was exploited for an enhanced tumor starvation and highly sensitive photothermal therapy (PTT). GOx-mediated tumor starvation could impede the adenosine triphosphate (ATP) generation and further downregulate the expression of heat shock protein (HSP) to decrease the thermoresistance of cells. Afterwards, near infrared (NIR) laser irradiation was performed not only to trigger sensitized PTT but also to initiate the release of encapsulated oxygen to relieve local hypoxia. Then, such GOx-mediated tumor starvation would be further amplified, accompanying with secondary enhanced suppression of HSP. Both in vitro and in vivo investigations demonstrated that such nanoreactor can realize a fascinating therapeutic outcome with minimal adverse effects in virtue of the improved synergistic starvation therapy and PTT. Taken together, the proposed treatment paradigm may inspire the future development of more intelligent nanoplatforms toward high efficient cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。