Paraspeckle Promotes Hepatocellular Carcinoma Immune Escape by Sequestering IFNGR1 mRNA

Paraspeckle 通过隔离 IFNGR1 mRNA 促进肝细胞癌免疫逃逸

阅读:6
作者:Jie Zan, Xuya Zhao, Xiya Deng, Hongda Ding, Bi Wang, Minyi Lu, Zijing Wei, Zhi Huang, Shuai Wang

Aims

Hepatocellular carcinoma (HCC) is the most common type of hepatic malignancies, with poor prognosis and low survival rate. Paraspeckles, which are unique subnuclear structures, are recently found to be involved in the development of various tumors, including HCC, and are related to induction in chemoresistance of HCC. This study aimed to investigate the possibility of paraspeckle in HCC cells participating in immune escape and its underlying mechanism in vitro and in vivo.

Background & aims

Hepatocellular carcinoma (HCC) is the most common type of hepatic malignancies, with poor prognosis and low survival rate. Paraspeckles, which are unique subnuclear structures, are recently found to be involved in the development of various tumors, including HCC, and are related to induction in chemoresistance of HCC. This study aimed to investigate the possibility of paraspeckle in HCC cells participating in immune escape and its underlying mechanism in vitro and in vivo.

Conclusions

Paraspeckle in HCC cells helps tumor cells escape from immunosurveillance through sequestering IFNGR1 mRNA to inhibiting IFN-γ-IFNGR1 signaling, thereby avoiding T-cell killing effects. Collectively, our results hint that NEAT1_2 highly expressed HCC patient is more resistant to T-cell therapy in clinic, and NEAT1_2 may be potential target for HCC immunotherapy.

Methods

Expression of NEAT1_2, the framework of paraspeckle, in HCC cells and tissues was detected by qRT-PCR and RNA-FISH. mRNAs interacted with NEAT1_2 were pull-downed and sequenced in C-terminal S1-aptamer-tagged NEAT1_2 endogenously expressed HCC cells constructed using CRISPR-CAS9 knock-in technology. The effects of paraspeckle on HCC sensitivity to T-cell-mediated cytolysis were detected by T-cell mediated tumor cell killing assay. The roles of NEAT1_2 or NONO on IFNGR1 expression and IFN-γ signaling by applying gene function loss analysis in HCC cells were detected by qRT-PCR, RNA immunoprecipitation, Western blotting, and ELISA. The role of paraspeckle during adoptive T-cell transfer therapy for HCC in vivo was performed with a subcutaneous xenograft mouse.

Results

Paraspeckle in HCC cells is negatively related to T-cell-mediated cytolysis. Destruction of paraspeckle in HCC cells by knockdown of NEAT1_2 or NONO significantly improved the sensibility of resistant HCC cells to T-cell killing effects. Furthermore, IFNGR1 mRNA, which is sequestered by NEAT1_2 and NONO, is abundant in paraspeckle of T-cell killing-resistant HCC cells. Incapable IFN-γ-IFNGR1 signaling accounts for paraspeckle mediated-adoptive T-cell therapy resistance. Moreover, NEAT1_2 expression negatively correlates with IFNGR1 expression in clinical HCC tissues. Conclusions: Paraspeckle in HCC cells helps tumor cells escape from immunosurveillance through sequestering IFNGR1 mRNA to inhibiting IFN-γ-IFNGR1 signaling, thereby avoiding T-cell killing effects. Collectively, our results hint that NEAT1_2 highly expressed HCC patient is more resistant to T-cell therapy in clinic, and NEAT1_2 may be potential target for HCC immunotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。