Sertoli cell-derived extracellular vesicles traverse the blood-testis barrier and deliver miR-24-3p inhibitor into germ cells improving sperm mobility

塞托利细胞衍生的细胞外囊泡穿过血睾屏障,并将 miR-24-3p 抑制剂递送到生殖细胞中,从而提高精子活力

阅读:5
作者:Yabing Chen, Dihui Xu, Yuhan Ma, Peilin Chen, Jianhang Hu, Deyan Chen, Wen Yu, Xiaodong Han

Abstract

Asthenozoospermia, characterized by poor sperm motility, is a common cause of male infertility. Improving energy metabolism and alleviating oxidative stress through drug regimens are potential therapeutic strategies. In this study, we observed upregulated miR-24-3p levels in asthenozoospermia spermatozoa, contributing to energy metabolism disorder and oxidative stress by reducing GSK3β expression. Thus, reducing miR-24-3p levels using drugs is expected to improve sperm motility. The blood-testis barrier (BTB) protects the testis from xenobiotics and drugs. In this study, we found that Sertoli cell-derived small extracellular vesicles (SC-sEV) can traverse the BTB and enter germ cells. We successfully loaded miR-24-3p inhibitor into SC-sEV, creating the nano-drug SC-sEV@miR-24-3p inhibitor, which effectively delivers miR-24-3p inhibitor into germ cells. In a gossypol-induced mouse asthenozoospermia model, administration of SC-sEV@miR-24-3p inhibitor significantly improved sperm motility, in vitro fertilization success, and blastocyst formation rates. As anticipated, it also improved the litter size of asthenozoospermia mice. These results suggest that SC-sEV@miR-24-3p inhibitor holds promise as a potential clinical treatment for asthenospermia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。