Rhodiosin from Rhodiola crenulata effectively alleviate postprandial hyperglycemia by inhibiting both the activity and production of α‑glucosidase

红景天中的红景天素可抑制 α-葡萄糖苷酶的活性和产生,有效缓解餐后高血糖

阅读:5
作者:Luya Wang, Li Wu, Jiaxin Li, Banma Cailang, Xiaohui Zhao, Huilan Yue

Background

Effective control of postprandial blood glucose (PBG) level is essential for the prevention and treatment of diabetes and its complications. Several flavonoids have attracted much attention due to their significant PBG-lowering effects. However, there is still a certain gap in the in vivo hypoglycemic activity of most flavonoids compared to first-line drugs available on the market, and are still lack of the PBG-lowering effects of 8-hydroxyflavones and their structure-activity relationship.

Conclusion

We have firstly comprehensively and systematically clarified PBG-lowering effects of 8-hydroxyflavones from Rhodiola crenulata, and revealed their structure-activity relationships and hypoglycemic mechanisms. The study demonstrated that the substitution of 8-hydroxy groups in flavonoids could significantly enhance their hypoglycemic effects, which were equivalent to or stronger than commercially available drug acarbose. 8-Hydroxyflavones could be used as therapeutic or health drugs with significant potential to reduce postprandial hyperglycemia.

Methods

Starch, maltose, sucrose, and glucose tolerance tests in both diabetic and normal mice were used to evaluate and compare the hypoglycemic effects of 8-hydroxyflavones rhodiosin (RHS), rhodionin (RHN), and herbacetin (HBT). Molecular docking, enzyme kinetics, and immunofluorescence analysis were used to research the possible hypoglycemic mechanisms of 8-hydroxyflavones.

Purpose

Evaluate hypoglycemic effects of 8-hydroxyflavones from Rhodiola crenulata in vitro and in vivo, especially comparatively analyze the relationship between hypoglycemic effects and flavonoid configuration and reveal the possible mechanism of 8-hydroxyflavones in lowering hyperglycemia.

Results

RHS (5 and 10 mg/kg) could efficiently decrease PBG levels in both normal and diabetes mice. Moreover, RHS, RHN, and HBT all had significant PBG-lowering effects in transgenic diabetes mice, and the effects were equivalent to or stronger than acarbose. Further mechanism research indicated that 8-hydroxyflavones achieved PBG-lowering effects by inhibiting both the activity and production of glycosidase. Notably, we have innovatively discovered that inhibiting the expression of glycosidases rather than just their activities may be a new target for hypoglycemic drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。