Newcastle disease virus activates methylation-related enzymes to reprogram m6A methylation in infected cells

新城疫病毒激活甲基化相关酶,重新编程受感染细胞中的 m6A 甲基化

阅读:4
作者:Weifeng Yuan, Yuechi Hou, Qingyi Wang, Ting Lv, Jinlian Ren, Lei Fan, Juncheng Cai, Bin Xiang, Qiuyan Lin, Ming Liao, Chan Ding, Libin Chen, Tao Ren

Abstract

Newcastle disease virus (NDV) is a paramyxovirus with high incidence and transmissibility in birds and is currently being developed for cancer therapy. N6-methyladenosine (m6A) is a common epigenetic modification of RNA. In this study, we aimed to determine whether this modification plays an important role in NDV infection. We found that methylation-related enzymes were activated in NDV-infected cells, and the abundance of m6A notably increased in vivo and in vitro. Further functional experiments showed that m6A methylation negatively regulates NDV infection. Methylated RNA immunoprecipitation sequencing revealed that the m6A-methylated peaks on different functional components of host genes shifted, underwent reprogramming, and were primarily enriched in the coding sequence after NDV infection. The differentially modified genes were mainly enriched in cellular components, as well as autophagy and ubiquitination-mediated proteolysis signaling pathways. Association analysis of RNA sequencing results showed changes in m6A regulated mRNA transcription and revealed that YTHDC1 is a methylation-related enzyme with important catalytic and recognition roles during NDV infection. Additionally, m6A-methylated peaks were detected in the NDV genome, which may be regulated by methylation-related enzymes in the host, subsequently affecting viral replication. Comprehensive analysis of the m6A expression profile after NDV infection indicated that NDV may cause reprogramming of m6A methylation and that m6A plays important roles during infection. Overall, these findings provide insights into the epigenetic etiology and pathogenesis of NDV.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。