SP1 regulates BMSC osteogenic differentiation through the miR-133a-3p/MAPK3 axis : SP1 regulates osteogenic differentiation of BMSCs

SP1通过miR-133a-3p/MAPK3轴调控BMSC成骨分化:SP1调控BMSC的成骨分化

阅读:7
作者:Liying Zhong, Yehai Sun, Cong Wang, Runzhi Liu, Wenjuan Ru, Wei Dai, Ting Xiong, Aimin Zhong, Shundong Li

Background

The progression of osteoporosis (OP) can dramatically increase the risk of fractures, which seriously disturb the life of elderly individuals. Specific protein 1 (SP1) is involved in OP progression. However, the mechanism by which SP1 regulates OP progression remains unclear.

Conclusion

SP1 regulates osteogenic differentiation by mediating the miR-133a-3p/MAPK3 axis, which would shed new light on strategies for treating senile OP.

Methods

SAMP6 mice were used to establish an in vivo model of age-dependent OP, and BALB/c mice were used as controls. BMSCs were extracted from two subtypes of mice. Hematoxylin and eosin staining were performed to mark the intramedullary trabecular bone structure to evaluate histological changes. ChIP assay was used to assess the targeted regulation between SP1 and miR-133a-3p. The binding sites between MAPK3 and miR-133a-3p were verified using a dual-luciferase reporter assay. The mRNA levels of miR-133a-3p and MAPK3 were detected using quantitative reverse transcription polymerase chain reaction (RT-qPCR). The protein expression of SP1, MAPK3, Colla1, OCN, and Runx2 was examined using Western blotting. Alkaline phosphatase (ALP) kit and Alizarin Red S staining were used to investigate ALP activity and mineralized nodules, respectively.

Objective

This study investigated the mechanism underlying the function of SP1 in OP.

Results

The levels of SP1 and miR-133a-3p were upregulated, whereas the expression of MAPK3 was downregulated in BMSCs from SAMP6 mice, and miR-133a-3p inhibitor accelerated osteogenic differentiation in BMSCs. SP1 directly targeted miR-133a-3p, and MAPK3 was the downstream mRNA of miR-133a-3p. Mechanically, SP1 accelerated osteogenic differentiation in BMSCs via transcriptional mediation of the miR-133a-3p/MAPK3 axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。