ETS2 mediated tumor suppressive function and MET oncogene inhibition in human non-small cell lung cancer

ETS2 介导的肿瘤抑制功能和 MET 致癌基因抑制在人类非小细胞肺癌中的作用

阅读:6
作者:Mohamed Kabbout, Melinda M Garcia, Junya Fujimoto, Diane D Liu, Denise Woods, Chi-Wan Chow, Gabriela Mendoza, Amin A Momin, Brian P James, Luisa Solis, Carmen Behrens, J Jack Lee, Ignacio I Wistuba #, Humam Kadara #

Purpose

The ETS2 transcription factor is an evolutionarily conserved gene that is deregulated in cancer. We analyzed the transcriptome of lung adenocarcinomas and normal lung tissue by expression profiling and found that ETS2 was significantly downregulated in adenocarcinomas. In this study, we probed the yet unknown functional role of ETS2 in lung cancer pathogenesis. Experimental design: Lung adenocarcinomas (n = 80) and normal lung tissues (n = 30) were profiled using the Affymetrix Human Gene 1.0 ST platform. Immunohistochemical (IHC) analysis was conducted to determine ETS2 protein expression in non-small cell lung cancer (NSCLC) histologic tissue specimens (n = 201). Patient clinical outcome, based on ETS2 IHC expression, was statistically assessed using the log-rank and Kaplan-Meier tests. RNA interference and overexpression strategies were used to assess the effects of ETS2 expression on the transcriptome and on various malignant phenotypes.

Results

ETS2 expression was significantly reduced in lung adenocarcinomas compared with normal lung (P < 0.001). Low ETS2 IHC expression was a significant predictor of shorter time to recurrence in NSCLC (P = 0.009, HR = 1.89) and adenocarcinoma (P = 0.03, HR = 1.86). Moreover, ETS2 was found to significantly inhibit lung cancer cell growth, migration, and invasion (P < 0.05), and microarray and pathways analysis revealed significant (P < 0.001) activation of the HGF pathway following ETS2 knockdown. In addition, ETS2 was found to suppress MET phosphorylation and knockdown of MET expression significantly attenuated (P < 0.05) cell invasion mediated by ETS2-specific siRNA. Furthermore, knockdown of ETS2 augmented HGF-induced MET phosphorylation, cell migration, and invasion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。