Morphological, immunocytochemical, and functional characterization of esophageal enteric neurons in primary culture

原代培养食管肠神经元的形态学、免疫细胞化学和功能特征

阅读:5
作者:Hui Dong, Yanfen Jiang, Shanthi Srinivasan, Ravinder K Mittal

Abstract

The enteric nervous system of the esophagus plays an important role in its sensory and motor functions. Although the esophagus contains enteric neurons, they have never been isolated and characterized in primary culture. We isolated and cultured enteric neurons of the rat esophagus and determined their morphological appearance, chemical coding for neurotransmitters, and functional characteristics. After primary culture for 2 wk, dendrites and axons appeared in the enteric neurons, which usually have one axon and several dendrites. Although the size of neuronal bodies varied from Dogiel type I to type II, their average size was 39 ± 1.8 μm in length and 23 ± 1.4 μm in width. Immmunocytochemical studies revealed that over 95% of these cells were positively stained for two general neuronal markers, PGP 9.5 or Milli-Mark Fluoro. Chemical coding showed that the neurons were positively stained for choline acetyltransferease (53 ± 6%) or nNOS (66 ± 13%). In functional studies, membrane depolarization and stimulation of several G protein-coupled receptors (GPCRs) induced Ca²⁺ signaling in the esophageal enteric neurons. The GPCR stimulation was found to induce both intracellular Ca²⁺ release and extracellular Ca²⁺ entry. The functional expressions of Ca²⁺ channels (voltage-gated Ca²⁺ channels and store-operated channels) and Ca²⁺ pump (sarcoplasmic reticulum Ca²⁺-ATPase) were also demonstrated on these neurons. We have grown, for the first time, esophageal enteric neurons in primary culture, and these contain excitatory and inhibitory neurotransmitters. The functional integrity of GPCRs, Ca²⁺ channels, and Ca²⁺ pump in these neurons makes them a useful cell model for further studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。