H3K9 trimethylation in active chromatin restricts the usage of functional CTCF sites in SINE B2 repeats

活性染色质中的 H3K9 三甲基化限制了 SINE B2 重复序列中功能性 CTCF 位点的使用

阅读:5
作者:Francesco Gualdrini #, Sara Polletti #, Marta Simonatto, Elena Prosperini, Francesco Pileri, Gioacchino Natoli

Abstract

Six methyltransferases divide labor in establishing genomic profiles of histone H3 lysine 9 methylation (H3K9me), an epigenomic modification controlling constitutive heterochromatin, gene repression, and silencing of retroelements. Among them, SETDB1 is recruited to active chromatin domains to silence the expression of endogenous retroviruses. In the context of experiments aimed at determining the impact of SETDB1 on stimulus-inducible gene expression in macrophages, we found that loss of H3K9me3 caused by SETDB1 depletion was associated with increased recruitment of CTCF to >1600 DNA binding motifs contained within SINE B2 repeats, a previously unidentified target of SETDB1-mediated repression. CTCF is an essential regulator of chromatin folding that restrains DNA looping by cohesin, thus creating boundaries among adjacent topological domains. Increased CTCF binding to SINE B2 repeats enhanced insulation at hundreds of sites and increased loop formation within topological domains containing lipopolysaccharide-inducible genes, which correlated with their impaired regulation in response to stimulation. These data indicate a role of H3K9me3 in restraining genomic distribution and activity of CTCF, with an impact on chromatin organization and gene regulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。