Development of a multiplex phenotypic cell-based high throughput screening assay to identify novel hepatitis C virus antivirals

开发基于多重表型细胞的高通量筛选检测方法以鉴定新型丙型肝炎病毒抗病毒药物

阅读:7
作者:Hee-Young Kim, Xiaolan Li, Christopher T Jones, Charles M Rice, Jean-Michel Garcia, Auguste Genovesio, Michael A E Hansen, Marc P Windisch

Abstract

Hepatitis C virus (HCV) infection is a global health concern with chronic liver damage threatening 3% of the world's population. To date, the standard of care is a combination of pegylated interferon-alpha with ribavirin, and recently two direct acting antivirals have entered the clinics. However, because of side effects, drug resistance and viral genotype-specific differences in efficacy current and potentially also future therapies have their limitations. Here, we describe the development of a phenotypic high-throughput assay to identify new cross-genotype inhibitors with novel mechanism of action, by combining a genotype (gt) 1 replicon with the infectious HCV gt2 cell culture system. To develop this phenotypic multiplex assay, HCV reporter cells expressing RFP-NLS-IPS and gt1b replicon cells expressing NS5A-GFP were co-plated and treated with compounds followed by inoculation with gt2a HCV. At 72h post treatment, RFP translocation as a marker for HCV infection and GFP fluorescence intensity as a marker for gt1 RNA replication were measured. Additionally, the total cell number, which serves as an indicator of cytotoxicity, was determined. This phenotypic strategy supports multi-parameter data acquisition from a single well to access cross-genotypic activity, provides an indication of the stage of the viral life cycle targeted, and also assesses compound cytotoxicity. Taken together, this multiplex phenotypic platform facilitates the identification of novel compounds for drug development and chemical probes for continuing efforts to understand the HCV life cycle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。