Biofunctionalization of Dental Abutment Surfaces by Crosslinked ECM Proteins Strongly Enhances Adhesion and Proliferation of Gingival Fibroblasts

交联 ECM 蛋白对牙基台表面进行生物功能化,大大增强牙龈成纤维细胞的粘附和增殖

阅读:6
作者:Alena L Palkowitz, Taskin Tuna, Shaza Bishti, Frederik Böke, Nathalie Steinke, Gerhard Müller-Newen, Stefan Wolfart, Horst Fischer

Abstract

To ensure the long-term success of dental implants, a functional attachment of the soft tissue to the surface of the implant abutment is decisively important in order to prevent the penetration of bacteria into the implant-bone interface, which can trigger peri-implant disease. Here a surface modification approach is described that includes the covalent immobilization of the extracellular matrix (ECM) proteins fibronectin and laminin via a crosslinker to silanized Ti6Al4V and Y-TZP surfaces. The surface properties are evaluated using static contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The interaction of human gingival fibroblasts (HGFs) with the immobilized ECM proteins is verified by analyzing the localization of focal contacts, cell area, cell morphology, proliferation rate, and integrin expression. It is observed in the presence of fibronectin and laminin an increased cellular attachment, proliferation, and integrin expression of HGFs accompanied by a significantly higher number of focal adhesions. The presented approach holds great potential to enable a stronger bond between soft tissue and implant abutment surface. This could potentially help to prevent the penetration of bacteria in an in vivo application and thus reduce the risk of periimplant disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。