AQP8 may affect glioma proliferation and growth by regulating GSK-3β phosphorylation and nuclear transport of β-catenin

AQP8 可能通过调节 GSK-3β 磷酸化和 β-catenin 的核转运来影响胶质瘤的增殖和生长

阅读:6
作者:Ziling Cai, Zihao Shen, Jing Zhao, Hao Zhang, Zhen Guo, Qingqian Xia, Hang Liang, Junnan Liu, Lihao Tan, Huajun Sheng, Shujuan Zhu

Conclusion

High AQP8 expression promotes proliferation and growth of glioma cells, a process associated with phosphorylation of GSK-3β and nuclear translocation of β-catenin.

Methods

AQP8 knockdown cell lines were constructed using a CRISPR/Cas9 double vector lentivirus infection. SAM/dCas9 was used to construct AQP8 overexpression cell lines and the CV084 lentivirus vector was used to construct AQP8 rescue cell lines. AQP8 and its mRNA, and phosphorylated GSK-3β, β-catenin, and other related proteins, were detected using western blot and qRT-PCR. Glioma cell apoptosis was detected using Hoechst 33342 dye. The migration of glioma cells was discovered using a wound healing assay. β-catenin localization in cells was detected using immunofluorescence staining.

Purpose

The purpose of this work is to examine the impact of AQP8 on the proliferation and development of human glioma cell lines A172 and U251 and to determine if aquaporin 8 (AQP8) is associated with GSK-3β phosphorylation and nuclear transport of β-catenin in the Wnt signaling pathway.

Results

The proliferative and migratory capacities of A172 and U251 cells were significantly enhanced after AQP8 overexpression. The Wnt signaling pathways appeared to have higher levels of phosphorylated GSK-3β and β-catenin, and a rise in the fluorescence intensity ratio of β-catenin in the nucleus and cytoplasm, which suggests that β-catenin translocated into the nucleus, while AQP8 knockdown produced the opposite effect. Further, overexpression of AQP8 in AQP8 knockdown cell lines rescued the reduction of related protein levels caused by AQP8 knockdown.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。