Kozak Sequence Acts as a Negative Regulator for De Novo Transcription Initiation of Newborn Coding Sequences in the Plant Genome

Kozak 序列作为植物基因组中新生编码序列从头转录起始的负调控因子

阅读:9
作者:Takayuki Hata, Soichirou Satoh, Naoto Takada, Mitsuhiro Matsuo, Junichi Obokata

Abstract

The manner in which newborn coding sequences and their transcriptional competency emerge during the process of gene evolution remains unclear. Here, we experimentally simulated eukaryotic gene origination processes by mimicking horizontal gene transfer events in the plant genome. We mapped the precise position of the transcription start sites (TSSs) of hundreds of newly introduced promoterless firefly luciferase (LUC) coding sequences in the genome of Arabidopsis thaliana cultured cells. The systematic characterization of the LUC-TSSs revealed that 80% of them occurred under the influence of endogenous promoters, while the remainder underwent de novo activation in the intergenic regions, starting from pyrimidine-purine dinucleotides. These de novo TSSs obeyed unexpected rules; they predominantly occurred ∼100 bp upstream of the LUC inserts and did not overlap with Kozak-containing putative open reading frames (ORFs). These features were the output of the immediate responses to the sequence insertions, rather than a bias in the screening of the LUC gene function. Regarding the wild-type genic TSSs, they appeared to have evolved to lack any ORFs in their vicinities. Therefore, the repulsion by the de novo TSSs of Kozak-containing ORFs described above might be the first selection gate for the occurrence and evolution of TSSs in the plant genome. Based on these results, we characterized the de novo type of TSS identified in the plant genome and discuss its significance in genome evolution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。