Fragments of the Nonlytic Proline-Rich Antimicrobial Peptide Bac5 Kill Escherichia coli Cells by Inhibiting Protein Synthesis

非裂解性富含脯氨酸的抗菌肽 Bac5 的片段通过抑制蛋白质合成杀死大肠杆菌细胞

阅读:7
作者:Mario Mardirossian, Quentin Barrière, Tatiana Timchenko, Claudia Müller, Sabrina Pacor, Peter Mergaert, Marco Scocchi, Daniel N Wilson

Abstract

Unlike most antimicrobial peptides (AMPs), the main mode of action of the subclass of proline-rich antimicrobial peptides (PrAMPs) is not based on disruption of the bacterial membrane. Instead, PrAMPs exploit the inner membrane transporters SbmA and YjiL/MdtM to pass through the bacterial membrane and enter the cytosol of specific Gram-negative bacteria, where they exert an inhibitory effect on protein synthesis. Despite sharing a high proline and arginine content with other characterized PrAMPs, the PrAMP Bac5 has a low sequence identity with them. Here we investigated the mode of action of three N-terminal Bac5 fragments, Bac5(1-15), Bac5(1-25), and Bac5(1-31). We show that Bac5(1-25) and Bac5(1-31) retained excellent antimicrobial activity toward Escherichia coli and low toxicity toward eukaryotic cells, whereas Bac5(1-15) was inactive. Bac5(1-25) and Bac5(1-31) inhibited bacterial protein synthesis in vitro and in vivo Competition assays suggested that the binding site of Bac5 is within the ribosomal tunnel, where it prevents the transition from the initiation to the elongation phase of translation, as reported for other PrAMPs, such as the bovine PrAMP Bac7. Surprisingly, unlike Bac7, Bac5(1-25) exhibited species-specific inhibition, being an excellent inhibitor of protein synthesis on E. coli ribosomes but a poor inhibitor on Thermus thermophilus ribosomes. This indicates that while Bac5 most likely has an overlapping binding site with Bac7, the mode of interaction is distinct, suggesting that Bac5 fragments may be interesting alternative lead compounds for the development of new antimicrobial agents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。