Fullerol nanoparticles suppress inflammatory response and adipogenesis of vertebral bone marrow stromal cells--a potential novel treatment for intervertebral disc degeneration

富勒醇纳米粒子抑制椎骨骨髓基质细胞的炎症反应和脂肪生成——一种治疗椎间盘退变的潜在新方法

阅读:4
作者:Qihai Liu, Li Jin, Francis H Shen, Gary Balian, Xudong Joshua Li

Conclusions

These results suggest that fullerol prevents the catabolic activity of vBMSCs under inflammatory stimulus by decreasing the level of ROS, MMPs, and TNF-α. Also, fat formation in vBMSCs is prevented by fullerol nanoparticles, and, therefore, fullerol may warrant further in vivo investigation as an effective biological therapy for disc degeneration.

Methods

With or without fullerol treatment, vBMSCs from Swiss Webster mice were incubated with 10 ng/mL interleukin-1 β (IL-1 β). The intracellular reactive oxygen species (ROS) were measured with fluorescence staining and flow cytometry. In addition, vBMSCs were cultured with adipogenic medium (AM) with or without fullerol. Gene and protein expressions were evaluated by real-time polymerase chain reaction and histologic methods.

Purpose

To investigate the potential of a free radical scavenger, fullerol nanoparticles, to prevent vertebral bone marrow lesion and prevent disc degeneration by inhibiting inflammation and adipogenic differentiation of vertebral bone marrow stromal cells (vBMSCs). Study design/setting: Fullerol nanoparticle solutions were prepared to test their in vitro suppression effects on mouse vBMSC inflammation and adipogenic differentiation compared with non-fullerol-treated groups.

Results

Fluorescence staining and flow cytometry results showed that IL-1 β markedly increased intracellular ROS level, which could be prevented by fullerol administration. Fullerol also decreased the basal ROS level to 77%. Cellular production of matrix metalloproteinase (MMP)-1, 3, and 13 and tumor necrosis factor alpha (TNF-α) induced by IL-1 β was suppressed by fullerol treatment. Furthermore, adipogenic differentiation of the vBMSCs was retarded markedly by fullerol as revealed by less lipid droplets in the fullerol treatment group compared with the adipogenic group. The expression of adipogenic genes PPARγ and aP2 was highly elevated with AM but decreased on fullerol administration. Conclusions: These results suggest that fullerol prevents the catabolic activity of vBMSCs under inflammatory stimulus by decreasing the level of ROS, MMPs, and TNF-α. Also, fat formation in vBMSCs is prevented by fullerol nanoparticles, and, therefore, fullerol may warrant further in vivo investigation as an effective biological therapy for disc degeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。