Differential Regulation of the Glucocorticoid Receptor in a Rat Model of Inflammatory Pain

炎症疼痛大鼠模型中糖皮质激素受体的差异调节

阅读:4
作者:Shaimaa I A Ibrahim, Judith A Strong, Katherine A Qualls, Yvonne M Ulrich-Lai, Jun-Ming Zhang

Background

Anti-inflammatory corticosteroids are a common treatment for different conditions involving chronic pain and inflammation. Clinically used steroids target the glucocorticoid receptor (GR) for its anti-inflammatory effects. We previously reported that GR in sensory neurons may play central roles in some pain models and that GR immunoreactivity signal in dorsal root ganglia (DRG) decreased after local inflammation of the DRG (a model of low back pain). In the current study, we aimed to determine if similar changes in GR signal also exist in a skin inflammation model, the complete Freund's adjuvant (CFA) model (a model of peripheral inflammatory pain), in which the terminals of the sensory neurons rather than the somata are inflamed.

Conclusions

There are distinctive patterns of GR activation under different pain conditions, depending on the anatomical location. The observed downregulation of the GR in sensory neurons may have a significant impact on the use of steroids as treatment in these conditions and on the regulatory effects of endogenous glucocorticoids.

Methods

A low dose of CFA was injected into the hind paw to establish the peripheral inflammation model in Sprague-Dawley rats of both sexes, as confirmed by measurements of behavior and paw swelling. Immunohistochemical and western blotting techniques were used to determine the expression pattern of the GR in the inflamed hind paw and the DRGs. Plasma corticosterone levels were measured with radioimmunoassay.

Results

The immunohistochemical staining revealed that GR is widely expressed in the normal DRG and skin tissues. Paw injection with CFA caused upregulation of the GR in the skin tissue on postinjection day 1, mostly detected in the dermis area. However, paw inflammation significantly reduced the GR signal in the L5 DRG 1 day after the injection. The GR downregulation was still evident 14 days after CFA inflammation. On day 1, western blotting confirmed this downregulation and showed that it could also be observed in the contralateral L5 DRG, as well as in the L2 DRG (a level which does not innervate the paw). Plasma corticosterone levels were elevated in both sexes on day 14 after CFA compared to day 1, suggesting autologous downregulation of the GR by corticosterone may have contributed to the downregulation observed on day 14 but not day 1. Conclusions: There are distinctive patterns of GR activation under different pain conditions, depending on the anatomical location. The observed downregulation of the GR in sensory neurons may have a significant impact on the use of steroids as treatment in these conditions and on the regulatory effects of endogenous glucocorticoids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。