Caspase Signaling in ED Patients and Animal Models

勃起功能障碍患者和动物模型中的 Caspase 信号传导

阅读:7
作者:Sarah Martin, Daniel A Harrington, Samuel Ohlander, Samuel I Stupp, Kevin T McVary, Carol A Podlasek

Aim

We examined the mechanism of how apoptosis occurs in ED patients and CN injury rat models to determine points of intervention for therapy development.

Background

Current treatments for erectile dysfunction (ED) are ineffective in prostatectomy and diabetic patients due to cavernous nerve (CN) injury, which causes smooth muscle apoptosis, penile remodeling, and ED. Apoptosis can occur via the intrinsic (caspase 9) or extrinsic (caspase 8) pathway.

Conclusions

Apoptosis takes place primarily through the extrinsic caspase 8 dependent pathway in ED patients and via the intrinsic caspase 9 dependent pathway in commonly used CN crush ED models. This is an important consideration for study design and interpretation that must be taken into account for therapy development and testing of drugs, and our therapeutic targets should ideally inhibit both apoptotic mechanisms. Martin S, Harrington DA, Ohlander S, et al. Caspase Signaling in ED Patients and Animal Models. J Sex Med 2021;18:711-722.

Results

Caspase 3-cleaved was observed in corpora cavernosa from Peyronie's patients and at higher abundance in prostatectomy and diabetic tissues. Apoptosis takes place primarily through the extrinsic (caspase 8) pathway in penis tissue of ED patients. In the CN crushed rat, caspase 3-cleaved was abundant from 1-9 days after injury, and apoptosis takes place primarily via the intrinsic (caspase 9) pathway. Caspase 9 was first observed and most abundant in a layer under the tunica, and after several days was observed in the lining of and between the sinuses of the corpora cavernosa. Caspase 8 was initially observed at low abundance in the rat corpora cavernosa and was not observed at later time points after CN injury. Aged and diabetic rat penis primarily exhibited intrinsic mechanisms, with diabetic rats also exhibiting mild extrinsic activation. Clinical translation: Knowing how and when to intervene to prevent the apoptotic response most effectively is critical for the development of drugs to prevent ED, morphological remodeling of the corpora cavernosa, and thus, disease management. Strengths and limitations: Animal models may diverge from the signaling mechanisms observed in ED patients. While the rat utilizes primarily caspase 9, there is a significant flux through caspase 8 early on, making it a reasonable model, as long as the timing of apoptosis is considered after CN injury. Conclusions: Apoptosis takes place primarily through the extrinsic caspase 8 dependent pathway in ED patients and via the intrinsic caspase 9 dependent pathway in commonly used CN crush ED models. This is an important consideration for study design and interpretation that must be taken into account for therapy development and testing of drugs, and our therapeutic targets should ideally inhibit both apoptotic mechanisms. Martin S, Harrington DA, Ohlander S, et al. Caspase Signaling in ED Patients and Animal Models. J Sex Med 2021;18:711-722.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。