Bioassay-Guided Different Extraction Techniques of Carica papaya (Linn.) Leaves on In Vitro Wound-Healing Activities

生物测定指导番木瓜叶不同提取技术对体外伤口愈合的影响

阅读:6
作者:Husnul Hanani Soib, Hassan Fahmi Ismail, Fitrien Husin, Mohamad Hafizi Abu Bakar, Harisun Yaakob, Mohamad Roji Sarmidi

Abstract

Herbal plants are traditionally utilized to treat various illnesses. They contain phytochemicals that can be extracted using conventional methods such as maceration, soxhlet, and boiling, as well as non-conventional methods including ultrasonic, microwave, and others. Carica papaya leaves have been used for the treatment of dengue, fungal, and bacterial infections as well as an ingredient in anti-aging products. Phytochemicals analysis detected the presence of kaempferol, myricetin, carpaine, pseudocarpaine, dehydrocarpaine I and II, ferulic acid, caffeic acid, chlorogenic acid, β-carotene, lycopene, and anthraquinones glycoside. Conventional preparation by boiling and simple maceration is practical, simple, and safe; however, only polar phytochemicals are extracted. The present study aims to investigate the effects of three different non-conventional extraction techniques (ultrasonic-assisted extraction, reflux, and agitation) on C. papaya phytochemical constituents, the antioxidant capacity, and wound-healing activities. Among the three techniques, the reflux technique produced the highest extraction yield (17.86%) with the presence of saponins, flavonoids, coumarins, alkaloids, and phenolic metabolites. The reflux technique also produced the highest 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging with an IC50 value of 0.236 mg/mL followed by ultrasonic-assisted extraction (UAE) (IC50: 0.377 mg/mL) and agitation (IC50: 0.404 mg/mL). At tested concentrations (3.125 µg/mL to 500 µg/mL), all extracts do not exhibit a cytotoxicity effect on the human skin fibroblast, HSF1184. Interestingly, reflux and UAE were active fibroblast proliferators that support 85% (12.5 µg/mL) and 41% (6.25 µg/mL) better cell growth, respectively. Additionally, during the early 24 h of the scratch assay, the migration rate at 12.5 µg/mL was faster for all extracts with 51.8% (reflux), 49.3% (agitation), and 42.5% (UAE) as compared to control (21.87%). At 48 h, proliferated cells covered 78.7% of the scratch area for reflux extract, 63.1% for UAE, 61% for agitation, and 42.6% for control. Additionally, the collagen synthesis was enhanced for 31.6% and 65% after 24 and 48 h of treatment for reflux. An HPLC-MS/MS-QTOF (quadruple time-of-flight) analysis of reflux identified nine phytochemicals, including carpaine, kaempferol 3-(2G-glucosylrutinoside), kaempferol 3-(2″-rhamnosylgalactoside), 7-rhamnoside, kaempferol 3-rhamnosyl-(1->2)-galactoside-7-rhamnoside, luteolin 7-galactosyl-(1->6)-galactoside, orientin 7-O-rhamnoside, 11-hydroperoxy-12,13-epoxy-9-octadecenoic acid, palmitic amide, and 2-hexaprenyl-6-methoxyphenol. The results suggested that reflux was the best technique as compared to ultrasonic and agitation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。